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One-Step Exponential-rational Methods for the Numerical Solution 
of First Order Initial Value Problems
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Peringkat Pertama Secara Berangka)
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ABSTRACT

In this study, a new class of exponential-rational methods (ERMs) for the numerical solution of first order initial value 
problems has been developed. Developments of third order and fourth order ERMs, as well as their corresponding local 
truncation error have been presented. Each ERM was found to be consistent with the differential equation and L-stable. 
Numerical experiments showed that the third order and fourth order ERMs generates more accurate numerical results 
compared with the existing rational methods in solving first order initial value problems.

Keywords: Exponential function; exponential-rational method; problem whose solution possesses singularity; rational 
function; rational method

ABSTRAK

Dalam kajian ini, satu kelas kaedah eksponen-nisbah untuk penyelesaian masalah nilai awal peringkat pertama secara 
berangka telah dibangunkan. Pembangunan kaedah eksponen-nisbah yang berperingkat ketiga dan keempat telah 
dibentangkan bersama dengan ralat pangkasan setempat yang sepadan. Setiap kaedah eksponen-nisbah didapati 
adalah tekal dengan persamaan pembezaan dan mempunyai kestabilan jenis L. Eksperimen secara berangka telah 
menunjukkan bahawa kaedah eksponen-nisbah berperingkat ketiga dan keempat menjana keputusan berangka yang 
lebih tepat berbanding dengan kaedah-kaedah nisbah yang sedia ada dalam menyelesaikan masalah nilai awal peringkat 
pertama.

Kata kunci: Fungsi eksponen; fungsi nisbah; kaedah eksponen-nisbah; kaedah nisbah; masalah dengan penyelesaian 
yang mempunyai singular

Introduction

When the solution of an initial value problem is known 
to possess singularity, it is appropriate to use numerical 
methods that are based on the local representation of a 
rational function of the theoretical solution y(x) of the 
initial value problem. Several studies such as Fatunla 
(1986) and van Niekerk (1988) had showed that the 
performances of numerical methods that are based on 
the local representation of a polynomial were generally 
poor when solving problem whose solution possesses 
singularity. In these cases, some researches have been 
carried out to develop numerical methods that are based 
on rational function which were found to be effective 
in integrating problem whose solution possesses 
singularity.
	 For the sake of convenience, we have addressed these 
special numerical methods that are based on rational 
functions as rational methods. Various formulations of 
existing rational methods can be found in the following 
articles or texts: Fatunla (1982, 1986), Ikhile (2001, 
2002, 2004), Lambert (1974), Lambert & Shaw (1965), 
Luke et al. (1975), Okosun & Ademiluyi (2007a, 2007b), 

Ramos (2007), van Niekerk (1987, 1988) and Wambecq 
(1976).
	 As we have mentioned earlier, the original purpose 
of rational methods is to deal with problem whose 
solution possesses singularity. However, from the above 
mentioned articles, rational methods were also applied to 
general initial value problems whose solutions possess 
no singularities. These problems include stiff problems 
and problems with oscillatory solutions. Therefore the 
applicability of rational methods is not limited in solving 
problem whose solution possesses singularity but having 
greater potential in solving even more general initial value 
problems.
	 The main objective of this study was to explore the 
possibilities of developing new explicit rational methods 
which perform as effectively as the existing one or even 
better than the existing one. Following from this objective, 
we would like to find out which kind of rational methods 
are outstanding and which are not, because the numerical 
comparisons among these existing rational methods have 
not been carried out and we still don’t know which kind 
of formulations are outstanding and which are not.
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Preliminaries

We are considering the initial value problem:

	 y´ = f (x,y), y(a) = η,	 (1)

where y, f (x,y) ∈ λ, x ∈ [a,b] ⊂ λ and  is assumed to 
satisfy all the conditions in order that (1) has a unique 
solution. The interval [a,b] is divided into a number of 
subintervals [xn, xn+1] with x0 = a and xn = x0 + nh, such 
that h is the step-size. Suppose that we have solved 
numerically the initial value problem in (1) up to a point 
xn  and have obtained a value yn as an approximation 
of  y(xn), which is the theoretical solution of (1). 
From Lambert (1973, 1991), assuming the localizing 
assumption that no previous truncation errors have been 
made, i.e. yn = y(xn), we are interested in obtaining yn+1 
as the approximation of  y(xn+1). For that purpose, we 
suggest an approximation to the theoretical solution 
y(xn+1) of (1) given by:

	   1 + bh ≠ 0,	 (2)

where b, c1, c2 and aj for j = 0, 1, …, k are parameters that 
may contain approximations of y(xn) and higher derivatives 
of y(xn).
	 We regard (2) as one-step exponential-rational method 
(in brief as ERM). If the ERM has order p, then this particular 
ERM is called a p-ERM. From (2), we can see that ERM is a 
class of one-step explicit methods that are based on rational 
function in basis, but the numerators are combinations 
of polynomials and exponential functions while the 
denominators remain as polynomial expressions. This is 
a very different approach because all the existing one-
step rational methods are based on conventional rational 
functions, where both numerators and denominators are 
purely polynomial expressions. From our readings, we 
found out that the stability conditions of a particular class 
of rational methods are affected by the underlying rational 
functions. All existing rational methods mentioned earlier 
were based on conventional rational functions. If these 
existing rational methods are applied to the scalar test 
problem y´ = λy, y(a) = y0, Re(λ), then we can see that 
none of them give an exact solution to the above mentioned 
test problem. In other words, none of the existing rational 
method is exponentially-fitted. There are two advantages 
for a numerical method being exponentially-fitted: firstly, 
it returns the exact solution to the above mentioned test 
problem and secondly, L-stability is guaranteed (Wu 
1998). In view of this, the new ERM in (2) is based on 
a specially designed rational function incorporated with 
exponential function so that the ERM is exponentially-fitted 
and possesses L-stability.
	 With the p-ERMs in (2), we associate the difference 
operator L defined by:

	 L[y(x);h]p–ERM = y(x+h)×(1+bh)– , p≥3,		
(3)

where y(x) is an arbitrary function, continuously 
differentiable on x∈ [a,b] ⊂ λ. Expanding y(x+h) and 
exponential function ec2h as Taylor series and collecting 
terms in (3) gives the following general expression:

	 L[y(x);h]p–ERM =	C0h
0 + C1h

1 + … + Ckh
k 

		  + Ck+1h
k+1 + Ck+2h

k+2 + ….	 (4)

	 We note that Ci for i = 0, 1, 2, … in (4) contain 
corresponding parameters that need to be determined in 
the derivation processes. Therefore, the order and local 
truncation errors of p-ERM based on (4) is defined as 
follows:

Definition 1.1 The difference operator (3) and the 
associated exponential-rational method (2) is said to 
be of order p = k + 3 if, in (4), C0 = C1 = … = Ck+3 = 0, 
Ck+4 ≠ 0.

Definition 1.2 The local truncation error at xn+1 of (2) is 
defined to be the expression L[y(xn);h]p–ERM given by (3), 
when y(xn) is the theoretical solution of the initial value 
problem (1) at a point xn. The local truncation error of (2) 
is then,

	 L[y(xn); h]p–ERM = Ck+4h
k+4 + O(hk+5).	 (5)

	 This article is organized as follows. Firstly, the 
derivations of ERMs of order 3 and 4 are presented. Next, 
the newly derived ERMs are analyzed in the contexts 
of consistency and absolute stability. Then, numerical 
experimentations and numerical comparisons are carried 
out in order to verify the validity of the new ERMs. Lastly, 
we end this article with a conclusion.

Third Order Exponential-rational Methods

The third order exponential-rational method can be 
obtained by taking 0k =  in (2) which yield the following 
formula:

	 yn+1 =   1 + bh ≠ 0.	 (6)

To determine the parameters a0, c1, c2 and b, we take k = 
0 in (3) and expand y(x+h) and ec2h into series, so that the 
following expression is obtained by Definition 1.1:

	 L[y(x); h]p–ERM = C0+C1h+C2h
2+C3h

3+C4h
4+O(h5),

where	 (7)
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	 When y(x) is taken as the theoretical solution of 
the initial value problem (1) at a point xn i.e. y(x) = y(xn) 
and letting C0 = C1 = C2 = C3 = 0, we obtain a system of 
four simultaneous equations which produces two sets of 
solutions:

	

		  (8)

and

	  
	 		  (9)

where y n =  y (x n)  and y n
(m) =  y (m )(x n)  for  m  = 

1, 2, 3 by the localizing assumption. We note that 
 

	 We indicate (6) based on (8) as 3-ERM(1) while (6) 
based on (9) as 3-ERM(2). From Definition 1.2, the local 
truncation error (in brief as LTE) of 3-ERM(1) and 3-ERM(2) 
are:

	 (10)
and

	 (11)

respectively, where yn = y(xn) and yn
(m) = y(m)(xn) for  m = 

1,2,3,4 by the localizing assumption.

Fourth Order Exponential-rational Methods

The fourth order exponential-rational method can be 
obtained by taking k = 1 in (2) which yield the following 
formula:

	 yn+1 =   1 + bh ≠ 0.	 (12)

	 To determine the parameters a0, a1, c1, c2 and b, we 
take k = 1 in (3) and expand y(x+h) and ec2h into series, so 
that the following expression is obtained:

	 L[y(x);h]p–ERM = C0+C1h+C2h
2+C3h

3+C4h
4+C5h

5+O(h6), 
where	  	 (13)

	

	 When y(x) is taken as the theoretical solution of the 
initial value problem (1) at a point xn i.e. y(x) = y(xn), and 
letting C0 = C1 = C2 = C3 = C4 = 0, we obtain a system of 
five simultaneous equations which produces two sets of 
solutions:

(14)
and

	  (15)

where yn = y(xn) and yn
(m) = y(m)(xn) for m = 1,2,3,4 by the 

localizing assumption. We note that 

	

	 We indicate (12) based on (14) as 4-ERM(1) while (12) 
based on (15) as 4-ERM(2). From Definition 1.2, the LTE 
of 4-ERM(1) and 4-ERM(2) are

	 (16)
and

(17)
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respectively, where  yn = y(xn) and yn
(m) = y(m)(xn) for m = 

1,2,3,4,5 by the localizing assumption.

Consistency and Absolute Stability 
of 3-ERMs and 4-ERMs

We now show that p-ERM(1) and p-ERM(2) for p =3,4  are 
consistent with the differential in (1) by the following 
definition.

Definition 4.1 The ERM in (2) is said to be consistent if 
(5) satisfy,

	 	  (18)

	 From Definition 1.2, L[y(xn);h]p-ERM is essentially 
the local truncation error for a p-th order ERM. On using 
Mathematica 8.0, it can be shown that the local truncation 
errors given in (10), (11), (16) and (17) satisfy the condition 
in (18), which directly implies that p-ERM(1) and p-ERM(2) 
for p = 3,4 are consistent with the differential in (1).
	 The absolute stability analysis of a p-ERM(1) or 
p-ERM(2) can be obtained easily by applying the ERMs 
proposed in this paper to the scalar test problem:

	 y´ = λy, y(a) = y0,Re(λ)<0.	 (19)

	 It can be shown that the applications of these proposed 
ERMs to the test problem in (19) resulted in the following 
difference equation:

	 yn+1 = R(z)yn, z = hλ.	 (20)

	 We note that R(z) is the stability function for any of 
the p-ERM proposed in this paper. Clearly yn → 0 as  n → 
∞  if and only if,

	 ⎜R(z)⎜<1.	 (21)

	 A p-ERM is absolutely stable for those values of z 
for which condition in (21) holds. The region of absolute 
stability of a p-ERM is defined as {z ∈ λ:⎜R(z)⎜≤1} or the set 
of points in the complex plane such that the approximated 
solution remains bounded after many steps of computations 
(Butcher 2003).
	 On using Mathematica 8.0, it can be shown that the 
stability functions for p-ERM(1) and p-ERM(2) for p = 3,4 
are identical, i.e.

	 R(z) = R(z)ERM = ez.	 (22)

	H ence, the stability regions for these four ERMs are 
also identical as illustrated in Figure 1.
	 By using (20) and (22), applications of all ERMs 
presented in this paper to the test problem in (19) resulted 
in the following difference equation:

	 yn+1 = ehλyn.	 (23)

	 We note that hλ is not represented by z for the ease of 
explanation. We can write (23) as:

	 	 (24)

	 Since (ehλ)n→0  as n→∞ for all z=hλ  with Re(λ)<0, we 
have yn→0 as n→∞. Consequently, p-ERM(1) and p-ERM(2) 
for p = 3,4 are A-stable (Wu 1998). For the numerical 
solutions of stiff problems, A-stable method is desirable and 
sometimes L-stable method is more preferable especially 
in solving excessive stiff problems.

Definition 4.2 (Lambert 1991) A numerical method is 
said to be L-stable if it is A-stable and in addition, when 
applied to the scalar test problem (19), it yields (20), where 
⎜R(z)⎜→0 

 
as Re(z)→ –∞.

	 It is easy to see that p-ERM(1) and p-ERM(2) for p = 3,4 
are L-stable because it is readily deduced that ⎜R(z)⎜→0 
as Re(z)→ –∞ from (22).

Numerical Experiments and Comparisons

It is very obvious that ERMs proposed in this paper will 
produce numerical solutions which are complex numbers 
due to the square root evaluations. To retrieve numerical 
solutions which are only real numbers, we shall only 
consider the real parts of the resulting complex values and 
ignore the imaginary parts of the complex values. It can be 
shown from computations, that the imaginary parts of the 
complex values are very small. The numerical experiments 
below will show that this numerical strategy taken does 
not affect the computational process and also yield better 
and satisfying numerical results.
	 Some test problems are used to check the accuracy of 
the proposed ERMs using different number of integration 
steps. We present the maximum absolute errors over the 
integration interval given by  where N is 
the number of integration steps. We note that y(xn) and yn 
represent the exact solution and numerical solution of a 
test problem at point xn, respectively. Step-size is chosen to 
fulfill stability and accuracy requirements. The numerical 
results obtained from the proposed ERMs are compared 

Figure 1. Stability region of p-ERM(1) 
and p-ERM(2) for p =3,4 
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with the numerical results obtained from existing third 
order and fourth order rational methods mentioned in Ikhile 
(2001), Lambert & Shaw (1965) and van Niekerk (1987, 
1988). We note that the third order methods of Lambert & 
Shaw (1965) and van Niekerk (1988) are identical, while 
the fourth order methods of van Niekerk (1987, 1988) are 
identical.

Problem 1 (Fatunla 1976)

	 y´(x) = –2xy(x) + 4x, y(0) = 3, x ∈ [0, 0.5].

The theoretical solution is y(x) = e-x2 + 2.

Problem 2 (Ramos 2007)

	 y´(x) = –100y(x) + 99e2x, y(0) = 0, x ∈ [0,10].

The theoretical solution is y(x) = (e2x – e–100).

Problem 3 (Fatunla 1982)

	 y´(x) = –2000e–200x + 9e–x, y(0) = 10, x ∈ [0,10].

The theoretical solution is y(x) = 10–10e–x – xe–x + 
10e–200x.

Problem 4 (Ramos 2007)

	 y´1(x) = -1002y1(x)+1000y2(x)2, y1(0) = 1, x∈[0,1];
	 y´2(x) = y1(x) – y2(x)(1 + y2(x)), y2(0) = 1, x∈[0,1].

The theoretical solutions are y1(x) = e–2x and y2(x) = e–x.

Problem 5 (Yaakub & Evans 2003)

	 y˝(x)+101y´(x)+100y(x) = 0, y(0) = 1.01, 
	 y´(0) = –2, x ∈ [0,1.].

The theoretical solution is y(x) = 0.01e–100x + e–x. Problem 
2 can be written as a system, i.e.

	 y´1(x) = y2(x), y1(0) = 1.01, x ∈ [0,10];
	 y´2(x) = –100y1(x) – 101y2(x), y2(0) = –2, .

The theoretical solutions are y1(x) = 0.01e–100x + e–x and 
y2(x) = –e–100x – e–x.

Problem 6 (Ramos 2007)

	 y´(x) = 1 + y(x)2, y(0) = 1, x ∈ [0,0.8].

The theoretical solution is y(x) = tan(x+π/4). 

Problem 6 is an example of problem whose solution 
possesses singularity. From the theoretical solution, notice 
that the solution becomes unbounded in the neighbourhood 
of the singularity at x = π/4 � 0.785398163367448.
	 From Table 1, we can see that the third order rational 
method of Ikhile (2001) generated the least accurate 
numerical results compared with the remaining third 
order rational methods that are found to have comparable 
accuracy in solving Problem 1. However, 4-ERM(1) and 
4-ERM(2) turn out to have an excellent accuracy compared 
with other existing fourth order rational methods for any 
number of integration steps (Table 2).
	 The results from Table 3 shows that 3-ERM(2) 
generated the most accurate numerical results in solving 
Problem 2, followed by 3-ERM(1) and the method by 
Ikhile (2001) was found to have a comparable accuracy. 
In other words, 3-ERM(1), 3-ERM(2) and the method by 
Ikhile (2001) suggest faster convergence compared with 
the methods by Lambert and Shaw (1965), van Niekerk 
(1987, 1988) in solving Problem 2 which is a stiff problem. 
Meanwhile, results from Table 4 shows that 4-ERM(1) is 
the most accurate fourth order method compared with 

Table 1. Maximum absolute errors for various third order methods with respect to the number of steps (Problem 1)

N Lambert and 
Shaw (1965)

van Niekerk 
(1987)

van Niekerk 
(1988)

Ikhile (2001) 3-ERM(1) 3-ERM(2)

16
32
64

8.35079(-06)
1.06661(-06)
1.34848(-07)

3.35810(-06)
4.27061(-07)
5.38534(-08)

8.35079(-06)
1.06661(-06)
1.34848(-07)

1.39243(-03)
3.56759(-04)
9.05271(-05)

4.99376(-06)
6.30791(-07)
7.92800(-08)

4.99376(-06)
6.30791(-07)
7.92800(-08)

Table 2. Maximum absolute errors for various fourth order methods with respect to the number of steps (Problem 1)

N Lambert and 
Shaw (1965)

van Niekerk 
(1987)

van Niekerk 
(1988)

Ikhile (2001) 4-ERM(1) 4-ERM(2)

16
32
64

4.76682(-07)
2.97999(-08)
1.86261(-09)

4.30940(-08)
2.74378(-09)
1.73048(-10)

4.30940(-08)
2.74378(-09)
1.73048(-10)

9.76086(-04)
2.44111(-04)
6.10333(-05)

1.49641(-09)
7.84479(-11)
4.44356(-12)

1.49641(-09)
7.84439(-11)
4.44489(-12)
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other existing methods that are found to have comparable 
accuracy. However, 4-ERM(2) is found to be less accurate 
for N = 1280 and N = 2560.

Problem 3 is also a stiff problem, but very much ‘stiffer’ 
than Problem 2. From Table 5, it is obvious that 3-ERM(1) 
and 3-ERM(2) converge to the theoretical solution faster 
than other existing third order rational methods. The same 
pattern emerges in Table 6 where 4-ERM(1) and 4-ERM(2) 
also converge to the exact solution faster than other existing 
fourth order rational methods. The observations from Table 
5 and 6 suggest that third order and fourth order rational 
methods of Ikhile (2001) converge slowly to the exact 
solution especially for N = 100000.

Problem 4 is a stiff system. The results from Tables 7 and 
8 show that 3-ERM(1) and 3-ERM(2) are more accurate than 

other existing third order rational method in computing 
the components y1(x) and y2(x)  for Problem 4. We wish to 
highlight the tremendous achievement of 3-ERM(1) for N 
= 160 as shown in Tables 7 and 8. This same pattern can 
also be seen when 4-ERM(1) and 4-ERM(2) achieved greater 
accuracy for N = 160 as shown in Tables 9 and 10. In view 
of this, we can say that 3-ERM(1), 4-ERM(1) and 4-ERM(2) 
possess the potential to achieve high accuracy with a smaller 
number of integration steps in solving Problem 4.
	 We note that third order rational methods of Lambert 
and Shaw (1965), van Niekerk (1987) and van Niekerk 
(1988) are found to have comparable accuracy for N = 
320 and N = 640. Third order methods of Ikhile (2001), 
3-ERM(1) and 3-ERM(2) are found to have comparable 
accuracy for N = 640. On the other hand, all fourth order 
rational methods presented in Tables 9 and 10 are found 
to have comparable accuracy for N = 640.

Table 3. Maximum absolute errors for various third order methods with respect to the number of steps (Problem 2)

N Lambert and 
Shaw (1965)

van Niekerk 
(1987)

van Niekerk 
(1988)

Ikhile (2001) 3-ERM(1) 3-ERM(2)

640
1280
2560

6.23940(+00)
6.89217(-01)
7.37724(-02)

6.25559(+00)
6.93903(-01)
7.40682(-02)

6.23940(+00)
6.89217(-01)
7.37724(-02)

1.95242(-02)
1.08057(-03)
7.41153(-05)

1.25561(-02)
1.51587(-03)
1.85829(-04)

7.65251(-05)
8.91571(-06)
8.91571(-06)

Table 4. Maximum absolute errors for various fourth order methods with respect to the number of steps (Problem 2)

N Lambert and 
Shaw (1965)

van Niekerk 
(1987)

van Niekerk 
(1988)

Ikhile (2001) 4-ERM(1) 4-ERM(2)

640 3.93344(-02) 2.67154(-02) 2.67154(-02) 2.67154(-02) 7.88357(-06) 2.82945(-03)
1280 1.65933(-03) 1.11371(-03) 1.11371(-03) 1.11371(-03) 3.46331(-07) 8.98964(+01)
2560 8.65459(-05) 5.79357(-05) 5.79357(-05) 5.79357(-05) 1.19209(-07) 1.33235(-02)

Table 5. Maximum absolute errors for various third order methods with respect to the number of steps (Problem 3)

N Lambert and Shaw 
(1965)

van Niekerk 
(1987)

van Niekerk 
(1988)

Ikhile (2001) 3-ERM(1) 3-ERM(2)

100 7.08987(+01) 1.51505(+00) 7.08987(+01) 4.71235(+00) 8.05125(-01) 8.05075(-01)
1000 7.48249(-01) 3.57558(-01) 7.48249(-01) 6.24419(-02) 2.36491(-02) 1.43271(-01)
10000 1.06282(-03) 1.44188(-03) 1.06282(-03) 1.34363(-03) 2.76633(-05) 1.93116(-04)
100000 1.10728(-06) 1.89317(-06) 1.10728(-06) 1.44295(-05) 2.86579(-08) 6.40614(-07)

Table 6. Maximum absolute errors for various fourth order methods with respect to the number of steps (Problem 3)

N Lambert and 
Shaw (1965)

van Niekerk 
(1987)

van Niekerk 
(1988)

Ikhile (2001) 4-ERM(1) 4-ERM(2)

100 4.12223(+02) 5.01565(+00) 5.01565(+00) 4.99044(+00) 2.35541(-02) 2.35541(-02)
1000 2.80158(-01) 8.19748(-02) 8.19748(-02) 8.10986(-02) 1.71212(-03) 1.98398(-05)
10000 3.27884(-05) 1.83181(-05) 1.83181(-05) 6.42436(-04) 4.49223(-07) 1.18550(-09)
100000 3.33261(-09) 1.98984(-09) 1.98984(-09) 1.26886(-05) 5.23190(-11) 4.18554(-13)
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Problem 5 is a stiff system arises from the reduction of a 
second order initial value problem to a system of coupled 
first order differential equations. From Table 11, it has 
been shown that 3-ERM(1), third order rational methods of 
Lambert and Shaw (1965), van Niekerk (1988) and Ikhile 
(2001) are found to have comparable accuracy except for 
N = 1280, while 3-ERM(2) and third order method of van 
Niekerk (1987) are found to have comparable accuracy 
for any number of integration steps. From Table 12, it is 
obvious that 4-ERM(1) is the most accurate fourth order 
method while 4-ERM(2) and other existing fourth order 
rational methods have comparable accuracy in solving 
Problem 5, for any number of integration steps.
	 The results from Table 13 shows that 3-ERM(1) and 
3-ERM(2) are not suitable to solve Problem 6, which 
is a problem whose solution possesses singularity. We 
can see that 3-ERM(1) and 3-ERM(2) are less accurate 
compared with other existing third order rational methods. 
Meanwhile, results from Table 14 shows that 4-ERM(2) is 
the least accurate fourth order method in comparison, which 

Table 7. Maximum absolute errors for various third order methods with respect to the number of steps (y1(x)) (Problem 4)

N Lambert and 
Shaw (1965)

van Niekerk 
(1987)

van Niekerk 
(1988)

Ikhile (2001) 3-ERM(1) 3-ERM(2)

160 2.19212(+02) 3.17981(-01) 2.19212(+02) 8.23205(-03) 5.19877(-05) 3.96606(+01)
320 2.90442(-05) 3.84679(-05) 2.90442(-05) 1.34220(-03) 1.99991(-06) 3.28414(-06)
640 2.01537(-11) 2.01373(-11) 2.01537(-11) 4.49640(-15) 4.21885(-15) 4.10783(-15)

Table 8. Maximum absolute errors for various third order methods with respect to the number of steps (y2(x))(Problem 4)

N Lambert and Shaw 
(1965)

van Niekerk 
(1987)

van Niekerk 
(1988)

Ikhile (2001) 3-ERM(1) 3-ERM(2)

160 2.18514(-01) 5.06153(-04) 2.18514(-01) 5.28030(-03) 3.14264(-05) 4.72343(-02)
320 2.16581(-06) 2.16300(-06) 2.16581(-06) 7.00650(-05) 1.86383(-07) 6.49753(-07)
640 1.96714(-11) 1.96536(-11) 1.96714(-11) 4.10783(-15) 2.77556(-15) 2.33147(-15)

Table 9. Maximum absolute errors for various fourth order methods with respect to the number of steps (y1(x))(Problem 4)

N Lambert and Shaw 
(1965)

van Niekerk 
(1987)

van Niekerk 
(1988)

Ikhile (2001) 4-ERM(1) 4-ERM(2)

160 2.69791(+05) 1.00469(-02) 1.00469(-02) 3.75787(-02) 1.21330(-07) 4.94472(-07)
320 1.28050(-08) 1.19347(-08) 1.19347(-08) 9.11811(-05) 2.68292(-10) 1.31970(-09)
640 6.93889(-15) 2.66454(-15) 2.66454(-15) 4.49640(-15) 2.77556(-15) 3.21965(-15)

Table 10. Maximum absolute errors for various fourth order methods with respect to the number of steps  (y2(x))(Problem 4)

N Lambert and Shaw 
(1965)

van Niekerk 
(1987)

van Niekerk 
(1988)

Ikhile (2001) 4-ERM(1) 4-ERM(2)

160 2.69781(+02) 1.75091(-04) 1.75091(-04) 3.79099(-03) 3.40338(-08) 1.63828(-07)
320 1.27173(-10) 5.95530(-11) 5.95530(-11) 5.10325(-06) 1.52687(-11) 7.94500(-11)
640 5.44009(-15) 3.05311(-15) 3.05311(-15) 4.10783(-15) 2.22045(-15) 2.10942(-15)

suggests that 4-ERM(2) is not suitable to solve Problem 6. 
However, 4-ERM(1) and other existing fourth order rational 
methods are found to have comparable accuracy for N = 
16 and N = 32. The observations from Tables 13 and 14 
also revealed that the third order and fourth order rational 
methods of Ikhile (2001) are the most suitable methods 
in solving problem whose solution possesses singularity 
because they yield more accurate numerical results.

Conclusion

In this article, we have presented a new class of ERMs which 
are explicit one-step methods that are based on rational 
functions. The general formulation of ERM is given in (2) 
while the order condition and local truncation error for an 
ERM are explained in Definition 1.1 and Definition 1.2.
	 Four examples of ERMs have been introduced i.e. 
3-ERM(1), 3-ERM(2), 4-ERM(1) and 4-ERM(2). From the 
process of derivations, readers must have noticed that the 
parameters b, c1, c2 and aj for a p-ERM are not unique, not 
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Table 11. Maximum absolute errors for various third order methods with respect to the number of steps (Problem 5)

N Lambert and Shaw 
(1965)

van Niekerk 
(1987)

van Niekerk 
(1988)

Ikhile (2001) 3-ERM(1) 3-ERM(2)

1280 2.91323(-05) 1.67276(-04) 2.91323(-05) 2.15408(-05) 7.46251(-04) 1.68219(-04)
2560 3.12721(-06) 1.56050(-05) 3.12721(-06) 3.18139(-06) 3.31054(-06) 2.48349(-05)
5120 3.67925(-07) 1.24983(-06) 3.67925(-07) 4.38761(-07) 1.96674(-07) 1.16168(-06)

Table 12. Maximum absolute errors for various fourth order methods with respect to the number of steps (Problem 5)

N Lambert and Shaw 
(1965)

van Niekerk 
(1987)

van Niekerk 
(1988)

Ikhile (2001) 4-ERM(1) 4-ERM(2)

1280 3.94471(-06) 2.07593(-05) 2.07593(-05) 1.05937(-05) 1.22646(-08) 1.38125(-05)
2560 2.08414(-07) 1.17827(-06) 1.17827(-06) 6.88079(-07) 9.47332(-10) 7.76176(-07)
5120 1.21032(-08) 7.07248(-08) 7.07248(-08) 4.39613(-08) 5.50824(-10) 5.43818(-08)

Table 13. Maximum absolute errors for various third order methods with respect to the number of steps (Problem 6)

N Lambert and Shaw 
(1965)

van Niekerk 
(1987)

van Niekerk 
(1988)

Ikhile (2001) 3-ERM(1) 3-ERM(2)

16 2.39514(-02) 2.10235(-01) 2.39514(-02) 5.20857(-04) 3.93191(+00) 1.51616(-01)
32 5.73126(-03) 5.01590(-02) 5.73126(-03) 6.22138(-05) 5.87270(+00) 3.47699(-02)
64 1.72803(-02) 2.15491(-01) 1.72803(-02) 9.67085(-05) 4.01475(+00) 1.52879(-01)

Table 14. Maximum absolute errors for various fourth order methods with respect to the number of steps (Problem 6)

N Lambert and Shaw 
(1965)

van Niekerk 
(1987)

van Niekerk 
(1988)

Ikhile (2001) 4-ERM(1) 4-ERM(2)

16 7.41608(-04) 5.20857(-04) 5.20857(-04) 5.20857(-04) 5.73593(-04) 3.81519(+00)
32 8.79923(-05) 6.22138(-05) 6.22138(-05) 6.22138(-05) 6.84152(-05) 1.39082(+01)
64 1.35069(-04) 9.67086(-05) 9.67086(-05) 9.67085(-05) 2.37726(-03) 1.41133(+00)

only for p = 3,4 but also for any value of p. In other words, 
a p-th order ERM is not unique but two different methods 
which share the same order of accuracy i.e. p-ERM(1) 
and p-ERM(2). Currently, we are studying the strategy 
on determining which p-ERM (p-ERM(1) or p-ERM(2)) 
yields the most accurate results and returns only these 
results. Another on-going investigation is to generalize the 
parameters b, c1, c2 and aj for any order of accuracy. The 
ERMs proposed in this article are said to be consistent by 
Definition 4.1. Absolute stability analysis showed that the 
proposed ERMs are L-stable. We shall prove that all ERMs 
are L-stable as well as convergence regardless of the order 
of accuracy in a future study.
	 We have chosen some test problems to evaluate the 
effectiveness of ERMs and other existing rational methods 
in terms of numerical accuracy. Most of the time, ERMs 
generated more accurate numerical results compared with 
existing rational methods in solving non-stiff problem 
(Problem 1) as well as stiff problems (Problems 2, 3, 4 
and 5). Therefore, ERMs are suitable for general initial 

value problems whose solutions possess no singularity. 
However, ERMs did not perform as good as existing rational 
methods when solving problem whose solution possesses 
singularity. Therefore, we can claim that ERMs are not 
suitable for problems whose solutions possess singularities. 
From these numerical experimentations, we can conclude 
that the capability of ERMs in solving problems whose 
solutions possess singularities is less obvious but in return, 
ERMs are more reliable in solving general initial value 
problems especially stiff problems.
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